SAYT1134 Towards Differential Geometry Group 3 Tutorial 6

Thomas Lam

August 21, 2024

1 Frenet frame

- 1. Let $\alpha : (-1,1) \to \mathbb{R}^3$ be the space curve given by $\alpha(s) = \left(\frac{1}{3}(1+s)^{\frac{3}{2}}, \frac{1}{3}(1-s)^{\frac{3}{2}}, \frac{1}{\sqrt{2}}s\right)$, with unit tangent vector $\mathbf{T}(s) = \left(\frac{1}{2}(1+s)^{\frac{1}{2}}, -\frac{1}{2}(1-s)^{\frac{1}{2}}, \frac{1}{\sqrt{2}}\right)$ and unit normal vector $\mathbf{N}(s) = \left(\sqrt{\frac{1-s}{2}}, \sqrt{\frac{1+s}{2}}, 0\right)$. Compute the unit binormal vector $\mathbf{B}(s)$ and the torsion τ .
- 2. Let $\mathbf{r}(s)$ be a regular arc length parametrized plane curve with curvature κ which is a constant.

(a) Prove that
$$\frac{\mathrm{d}}{\mathrm{d}s}\left(\mathbf{r}(s) + \frac{1}{\kappa}\mathbf{N}(s)\right) = \mathbf{0}$$
, where **N** is the unit normal vector.

(b) Hence show that $\mathbf{r}(s)$ lies on a circle.

3. Let $\mathbf{r}(s)$ be a regular space curve with arc length parametrization, $\mathbf{T}(s)$ and $\mathbf{N}(s)$ be the unit tangent vector and unit normal vector respectively. Suppose $\kappa(s) > 0$ for any s and there exists a constant c and a constant unit vector **u** such that

$$\langle \mathbf{T}(s), \mathbf{u} \rangle = c$$

for all s.

- (a) Show that $\mathbf{N}(s)$ and \mathbf{u} are orthogonal for all s.
- (b) Using (a), show that there exists a constant θ such that $\mathbf{u} = \cos \theta \mathbf{T}(s) + \sin \theta \mathbf{B}(s)$ for all s.
- (c) Using (b) and the Frenet formulas, or otherwise, prove that $\frac{\tau(s)}{\kappa(s)} = \cot \theta$

2 Surfaces

1. The helicoid is parametrized by $\mathbf{x}(u, \theta) = (u \cos \theta, u \sin \theta, a\theta)$, for $a > 0, u, \theta \in \mathbb{R}$. Show that it is a regular surface.

2. Find the first fundamental form and the surface area of the following parametrized surface:

(a)
$$\mathbf{x}(u,\theta) = (u\cos\theta, u\sin\theta, u^2), \ u \in (0,1), \theta \in (0,2\pi)$$

(b) $\mathbf{x}(u,\theta) = (u\cos\theta, u\sin\theta, \theta), \ u \in (-1,1), \theta \in (0,2\pi)$
(You can use $\int \sqrt{x^2 + 1} \, dx = \frac{1}{2}(x\sqrt{x^2 + 1} + \ln(x + \sqrt{x^2 + 1})) + C$ directly)

3 Some tips/advice for Test **2**

- 1. Test 2 Coverage: All lecture and tutorial materials up to the teaching content today, with emphasis on content after test 1
- 2. Revise things taught in the lecture and tutorial notes, including the examples (revising those not taught in class also helps, though not as important as those taught)
- 3. Do as much exercise from lecture notes (chapter 2) as possible to familiarise yourself with concepts such as curvature and Frenet frame
- 4. Understand how to prove a surface is regular and compute the first fundamental form and surface area